¸Þ°¡¼±»ý´Ô

  • °øÁö»çÇ×

N

MATLAB Çѹ濡 ³¡³»±â - Advanced2 (¼öÇÐ,ÄÁÆ®·Ñ)

[°úÇÐ] ±ÇÁØÇ¥ ¼±»ý´Ô Àüü °­ÁÂ

  • ´ë»ó Çгâ
    ´ëÇлý
    °­Á À¯Çü
    ±âº»ÀÌ·Ð
  • °­Á ±¸¼º
    °¢ 30ºÐ¾¿, ÃÑ 22°­
    ¼ö°­ ±â°£
    90ÀÏ
  • Á¦ÀÛ ¹æ½Ä
    µ¿¿µ»ó ½ºÆ©µð¿À °­ÀÇ
    ºÎ°¡ ±â´É
    AI ÀÚ¸·

°­ÁÂÁ¤º¸

°­Á ¹üÀ§

°øÇа迭¿¡¼­ ÇÊ¿äÇÑ Àü¹ÝÀûÀΠ¸ÅÆ®·¦ÀÇ ¼öÇÐ, ÄÁÆ®·Ñ

³»¿ë ¹× Ư¡

»ó¼¼ÇÑ À̷аú ½Ç½ÀÀ» ¹ÙÅÁÀ¸·Î MATLAB Çѹ濡 ³¡³»±â!


[ÇнÀ¸ñÇ¥]

- MATLABÀÇ ±âº»ºÎÅÍ ÇٽɱîÁö ÇÊ¿äÇÑ ³»¿ëÀ» ²Ä²ÄÇÏ°Ô ¼³¸íÇÑ´Ù.

- °øÇеµ°¡ ¹è¿ö¾ß ÇÒ Àü°ø ÀÌ·ÐÀ» ½±°Ô ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼³¸íÇÑ´Ù.

- Àü°ø ¿¹Á¦¿¡ Àû¿ëÇØ º½À¸·Î½á MATLAB°ú Àü°ø ¸ðµÎ¸¦ ¹è¿ï ¼ö ÀÖ´Ù.

 

[ÇнÀ³»¿ë]

1. ¹ÌºÐ ¹æÁ¤½Ä, º§ÅÍ Çʵå
2. »ó¹ÌºÐ¹æÁ¤½Ä È°¿ë: ÃßÀû¹®Á¦
3. »ó¹ÌºÐ¹æÁ¤½Ä È°¿ë: RobertsonÀÇ È­ÇйÝÀÀ ¸ðµ¨, ±âÈ£ »ó¹ÌºÐ¹æÁ¤½Ä Ç®ÀÌ(dsolve)
4. °æ°èÄ¡ ¹®Á¦(bvp4c)
5. Æí¹ÌºÐ ¹æÁ¤½Ä(pdepe)
6. ÇÔ¼öÀÇ ±ØÇÑ, ¹ÌºÐ(diff), ºÎÁ¤ÀûºÐ, Á¤ÀûºÐ, ¼öÄ¡ÀûºÐ, ´ÙÁßÀûºÐ, Symbolic ÀûºÐ
7. ´ÙÇ×½Ä °ªÀÇ °è»ê, °ö¼À°ú ³ª´°¼À, Chebyshev ´ÙÇ×½Ä
8. Symbolic ´ÙÇ×½Ä, ½ÄÀÇ Àü°³¿Í ÀμöºÐÇØ, ½ÄÀÇ ´Ü¼øÈ­, Taylor¼ö¿­
9. ÆĶó¹ÌÅ͸¦ ÀÌ¿ëÇÑ °î¼±ÀÇ Ç¥Çö, Á¢¼±º¤ÅÍ¿Í ¼Óµµ, È£ÀDZæÀÌ(´Ù°¢Çü ±Ù»ç, ¼öÄ¡ÀûºÐ ÇÔ¼ö, ÆĶó¹ÌÅÍ)
10. Æò¸é¿¡¼­ÀÇ È¸Àü, ±ØÁÂÇ¥¸¦ ÀÌ¿ëÇÑ ¼öÄ¡ÇÔ¼ö ±×·¡ÇÁ, Æí¹ÌºÐ°ú ¹æÇâ¹ÌºÐ
11. ±â¿ï±â º¤ÅÍ¿Í ¼öÁØ°î¼±, Á¢¼±Æò¸é ±Ù»ç, 3Â÷¿ø ±â¿ï±â º¤ÅÍÇʵå
12. Ç¥¸éÀÇ ÆĶó¹ÌÅÍ Ç¥Çö(ȸÀüÇ¥¸é, ezsurf)
13. ÀÓ°èÁ¡°ú ¹ÌºÐÅ×½ºÆ®
14. ±Ø°ªÀÇ °è»ê, ÃÖ´ëÇÏÇâ°æ»ç ¹æ¹ý(Steepest Descent Method)
15. Newton ¹æ¹ý, MATLAB ÇÔ¼ö¸¦ ÀÌ¿ëÇÑ ÃÖÀûÈ­(fminbnd, fminsearch)
16. Laplace º¯È¯, ¿ª Laplace º¯È¯, Laplace º¯È¯À» ÀÌ¿ëÇÑ ¹ÌºÐ¹æÁ¤½Ä Ç®ÀÌ
17. Fourier º¯È¯, ¿ª Fourier º¯È¯, °í¼Ó Fourier º¯È¯(Fast Fourier Transform)
18. Àü´ÞÇÔ¼ö, »óÅÂÇÔ¼ö
19. ºí·Ï¼±µµ(Á÷·Ä, º´·Ä, feedback)
20. Æú(Pole)-¿µÁ¡(Zero) ¼Ò°Å, ½Ã½ºÅÛÀÇ ÀÀ´ä(°è´Ü, ÀÓÆÞ½º, lsim)
21. Root locus, Bode ¼±µµ, Nyquist ¼±µµ, Nichols ¼±µµ, PM, GM
22. Simulink
¼ö°­ ´ë»ó - MATLAB ÀÔ¹®ÀÚ